Solutions to Problem 1.

- State space. $\mathcal{M}=\{0,1,2, \ldots\}$

Each state represents the number of customers in the ice-cream shop, including those in the queue and those being served.

- Arrival rates.

$$
\lambda_{i}= \begin{cases}20\left(1-\frac{i}{5}\right) & \text { for } i=0,1, \ldots, 5 \\ 0 & \text { for } i=6,7, \ldots\end{cases}
$$

- Service rates.

$$
\mu_{i}=10 \quad \text { for } i=1,2, \ldots
$$

Note that the service rates for $i=6,7, \ldots$ are not relevant, since those states will never be reached.

Solutions to Problem 2.

- State space. $\mathcal{M}=\{0,1,2, \ldots\}$

Each state represents the number of customers at the service counter, including those in the queue and those being served.

- Arrival rates.

$$
\lambda_{i}=45 \quad \text { for } i=0,1,2, \ldots
$$

- Service rates.

$$
\mu_{i}= \begin{cases}30 & \text { if } i=1,2 \\ 60 & \text { if } i=3,4, \ldots\end{cases}
$$

